
This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 16: EDEX Updates for TO10

February 18, 2009
AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00

2/18/09 Page 2AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Objective
Understand the modifications to the EDEX architecture that
were implemented in AWIPS II TO10

2/18/09 Page 3AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Topics
Describe EDEX platform updates
Describe EDEX Code Reorganization
Describe move to Camel as the Integration Framework
Describe database improvements
Describe data serialization improvements
Describe new Command Line Interface tools package
Describe improvements to data decoder plug-ins
Describe improvements to EDEX service endpoints

2/18/09 Page 4AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Platform Updates

2/18/09 Page 5AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Platform Updates – Eclipse
Update:
– Eclipse has been updated to Version 3.4.1, built 9/11/2008

Rationale:
– Latest Version available at the appropriate time in the TO, contains

latest bug fixes and enhancements
– Used for CAVE and EDEX development and builds

Impacts:
– Minimal changes required

Install:
– Packaged with AWIPS II Installers

2/18/09 Page 6AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Platform Updates: PostgreSQL
Update:
– Postgres updated to PostgreSQL 8.3.4

Rationale:
– Latest Version available at the appropriate time in the TO, contains

latest bug fixes and enhancements

Impacts:
– Minimal changes required

Install:
– Packaged with AWIPS II Installers

2/18/09 Page 7AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Platform Updates: ActiveMQ
Update:
– ActiveMQ updated to version 5.2.0 (from 4.1.1)

Rationale:
– Latest ActiveMQ Version available at the appropriate time in the TO,

contains latest bug fixes and enhancements
– Supports embedding of other Apache products into an integrated

running environment

Impacts:
– Minimal changes, updated configuration required

Install:
– Packaged with AWIPS II Installers

2/18/09 Page 8AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Platform Updates: Mule
Update:
– Mule has been replaced by Apache Camel

Rationale:
– Changes in the MuleSource business model and licensing coupled with

an uncertain release schedule made continuing with Mule problematical

Impacts:
– Some code rewrite required; much simplified deployment

Install:
– Packaged with AWIPS II Installers

Note: This is covered in more detail later.

2/18/09 Page 9AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Platform Updates: Java Serialization
Update:
– JiBX has been replaced with Java Architecture for XML Binding (JAXB)

Rationale:
– JiBX doesn't work particularly well in our plug-in architecture.
– Performance: Possible to do even better than JiBX

Impacts:
– Some code rewrite required; much builds

Install:
– Packaged with AWIPS II Installers

Note: This is covered in more detail later.

2/18/09 Page 10AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 11AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization

2/18/09 Page 12AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization
With TO10, the EDEX code base in the ADE has been
reorganized into Open Services Gateway Initiative (OSGi)
compliant plug-ins
– The EDEX runtime (Camel) does not leverage OSGi compliance
– The ADE IDE (Eclipse) does leverage OSGi compliance

Using OSGi provides a standard minimal framework for
creating EDEX projects

2/18/09 Page 13AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization (cont’d)

EDEX components are Eclipse plug-ins
– This leverages the use of Eclipse IDE to create the basic component

structure

Two components are used to enable this:
– com.raytheon.edex.feature.uframe

Components that are part of EDEX must be registered in this plug-in
– com.raytheon.edex.ui.personalities.uframe

Required by Eclipse, not used by EDEX

2/18/09 Page 14AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization (cont’d)

EDEX components extend the Eclipse plug-in model, adding
additional directories and files that are used during
deployment and execution of EDEX
– Resources used by the component are included in a “res” directory

Camel-enabled components require descriptors under “res/spring”
Additional configuration may be provided in “res/conf”

– Components contributing objects using JavaArchitecture for XML
Binding (JAXB) serialization require an additional file under META-INF

– All components require a deployment definition file, component-
deploy.xml

Other changes to the code base have eliminated
– Most Hibernate definition files have been eliminated
– Most JiBX definition files have been eliminated

2/18/09 Page 15AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization (cont’d)

EDEX Build has been simplified – integrated with Eclipse
– Eclipse automatically builds, but does not deploy, EDEX as code is

modified
– Build is determined by linkages between the EDEX feature and each

component.

EDEX can be built from the command line
– More on this later

EDEX deploy is feature based – not directly supported by
Eclipse
– Details on deploying via Eclipse are in the examples

EDEX can be deployed from the command line
– More on this later

2/18/09 Page 16AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Tools
For TO9, the ADE shipped with an Eclipse plug-in – Plugin
Creator – to assist in making a new data decoder plug-in for
EDEX
With the change to an OSGi/Eclipse plug-in structure for
EDEX components, this tool no longer generates valid
plug-in skeletons and should no longer be used
All EDEX components can be created using the Eclipse
Plug-in Development tools
– These tools are shipped with Eclipse in the ADE

The plan is to discontinue support for the EDEX-specific
Plugin Creator

2/18/09 Page 17AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example
Problem:

Create an EDEX component, YAHW, that logs messages to
the EDEX system log.

Solution:
Create a new OSGi plug-in to host the component. Provide a
main class for the component that utilizes existing EDEX
code to perform logging.

To Do:
Camel wiring will be provided later.

2/18/09 Page 18AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

First, create a new plug-in project:
Open the New Project dialog.
– Click the New icon in the Eclipse

toolbar.
– Select Project…
On the New Project dialog, find
Plug-in Project in the selection list.
– Hint: The text box limits the search;

type plug to quickly find Plug-in
Project.

Select Plug-in Project and click
Next >.

2/18/09 Page 19AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Enter basic Plug-in details:
Enter the Project Name.
– Hint: This is the name Eclipse uses

to create a project directory.
– In this example, use

org.noaa.gov.to10.example.
Enter the project Location.
– Hint: You can use the default

location or browse to a different
location (be sure to create the
directory).

Set the Eclipse version.
– EDEX uses Eclipse version 3.4.
Continue to the next page.
– Click Next >.

2/18/09 Page 20AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Provide/verify Plug-in details:
Verify that the Plug-in Properties
are correct.
– Enter a Plugin-in Provider.

In this example, use AWIPS II Training.
– Change Execution Environment to

<No Execution Environment>
Set the Plug-in Options.
– De-select all entries under Plug-in

Options.
Make sure the Rich Client
Application option has No selected.
Create the Plug-in.
– Click Finish.

2/18/09 Page 21AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Eclipse will open the newly created
plug-in in the Plug-in Development
perspective.
– Hint: You can change to the Java

Perspective
To see what Eclipse has generated for
you.
– Locate and expand the

org.noaa.gov.to10.example node in the
Package explorer.

– Expand the META-INF node.
You should see a directory structure
similar to that displayed above right.
The display lower right is in the
Navigator view of the Java perspective.

Note: The next few slides assume a switch to the Java Navigator.

2/18/09 Page 22AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Adding the Code:
The design of this example is
shown at right; the code is shown
on a later slide.
The code for this example is fairly
simple.
Note that this is a POJO.
– There is no dependency in this

design to any special classes.

class example

ExampleMain

- logger: volati le Log = LogFactory.getL...

+ ExampleMain()
+ execute(Object) : Object

2/18/09 Page 23AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Create the package structure:
Open the New Java Package
dialog.
– In the Navigator, right click on the

src directory.
– select New→Package.
Verify that the Source folder is
correct.
– In this example, the source folder is

org.noaa.gov.to10.example/src.
Enter the package name.
– In this example, enter

org.noaa.gov.to10.example.
Create the package.

Click Finish.

Note: In Eclipse, the view updates to show the new package.

2/18/09 Page 24AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Add the main class for the plug-in:
Open the New Java Class dialog.
– Locate the newly created package in

the src directory of
org.noaa.gov.to10.example.

– Right click on the package and
select New→Class.

Select the appropriate class
options.
– Enter the name of the new class.

In this example, use ExampleMain.
– Optional: Select to generate method

stubs and/or comments.
– Click Finish.

A skeleton of the class is added to
the project.

Note: In Eclipse, newly created class is opened in the Java editor.

2/18/09 Page 25AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Code the class:
Add the constructor and a execute
method as shown at right.
– Hint: The code to add is in italic font.
As you enter the code, Eclipse will
flag errors in several statements.
– Both imports will list errors.
– The lines defining and using logger

will show errors.
The errors exist because each
Eclipse plug-in has its own
dependencies
– At this point, this new plug-in doesn’t

know about the Apache classes in
the import statements.

2/18/09 Page 26AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Add Apache Commons Logging:
Open the plug-in Editor.
– In the Navigator view, find and

double click on MANIFEST.MF.
Add the dependency.
– Click on Add...

2/18/09 Page 27AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Add Apache Commons Logging.
– Locate and select

org.apache.commons.logging.
– Hint: Use the text box to limit the

selections.
Click OK.

2/18/09 Page 28AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

The editor will update to display the
new dependency.
Click the Save icon on the toolbar
to save the modified project files.

Note: Adding this dependency
should clear up the errors in
ExampleMain.java. If it does not,
you can force a rebuild by
selecting Clean… under the
Project menu.

2/18/09 Page 29AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Final steps:
Once the plug-in has been created, we still need to perform
two steps before we can deploy it as part of EDEX
– First, we need to add the new plug-in to the EDEX feature;
– Second, we need to add an ANT script, component-deploy.xml to the

project.

2/18/09 Page 30AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Open the EDEX feature for editing:
Locate and expand the EDEX
feature (com.raytheon.edex.
feature.uframe)
Double click on feature.xml.
Click the Plug-ins tab.

Add the example project:
Click Add…

2/18/09 Page 31AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

On the Plug-in Selection dialog:
Locate the example plug-in.
– Hint: Use the text box to limit

selections.
Select org.noaa.gov.to10.example.
Click OK.

Back in the Plug-in Editor:
Save the changes

2/18/09 Page 32AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Add component-deploy.xml:
Locate org.noaa.gov.to10.example
in the Navigator.
In the Navigator, right click on
org.noaa.gov.to10.example.
Select New→File.

The New File dialog will open.

2/18/09 Page 33AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

In the New File dialog:
Enter component-deploy.xml in the
File name text box.
Click Finish to create the file.

2/18/09 Page 34AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Add the XML:
The new file will be in the XML
editor.
Enter the XML shown below right
Save the file.

Note: Most EDEX plug-ins use essentially the same
plugin-deploy.xml. You can save some time by
copying the file from another plug-in project and
modifying it. Be sure to modify the project in the first
line and the property value in the second line
exactly as shown here.

2/18/09 Page 35AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

EDEX deploy is controlled by an
ANT build file (deploy-install.xml) in
the build.edex project.
– Deploying components is keyed by

the directory name of the component.
– By default, the directory must contain

“raytheon” to package and deploy.
The includegen ant task controls the
package and deploy.
– Add a providerfilter attribute to specify

additional providers.
– Open deploy-install.xml in Eclipse.
– Locate the includegen tag.
– Add the providerfilter as shown.

Because we have both Raytheon and
NOAA code, we use “raytheon|noaa” as
the filter value.

2/18/09 Page 36AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

The example is nearly ready to go; we just need to build and
deploy it.
– The good news: Eclipse has already built it for us!
– The new plug-in will deploy when EDEX is deployed.

Deploying the project is covered on the next few slides.

Deploying the EDEX
The ADE ships with an ANT script deploying EDEX.
– The script is located in the edex.build project.

2/18/09 Page 37AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Run the EDEX deploy script:
Locate and expand the build.edex project in the
Navigator view.
Right click on deploy-install.xml and select Run
As=External Tools Configurations.
This opens the External Tools Configurations dialog.

2/18/09 Page 38AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Change the Name entry to something meaningful.
In the Arguments text box, enter:

–Dinstall.dir=<EDEX install directory>.
Normally, this will be something like

/home/mfegan/awips/edex or /awips/edex.
Click Apply to save the configuration.
Click Run to deploy EDEX.

Note: Once the deploy script
has been run once, it can be
executed via the External
Tools button on Eclipse’s
toolbar.

2/18/09 Page 39AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Code Reorganization – Example (cont’d)

Validating the deploy:
Open the EDEX services directory.
– location /awips/edex/lib/services
List the directory contents.
Verify that TO10Example.jar is in the directory.

2/18/09 Page 40AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 41AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Transition from Mule to Camel

2/18/09 Page 42AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Why Camel?
Mule 1.4.x no longer viable solution
– Mule 1.4 branch full of show-stopping bugs that are not being fixed

in Mule 1.4.x product line
– Mule 1.4.3 introduced a new licensing model that indicates a

potential move to closed source
– Mule 1.4.3 included library changes that forced EDEX recoding
– Even with suggested fixes applied, the software was deemed to be

highly unstable for the processing load required by EDEX
MTBF dropped to under an hour.

– Major EDEX redesign indicated to support continuing with Mule!

Note: Even though Mule has been eliminated from the
EDEX code baseline, some non-code files still contain
references to Mule. The primary example of these Mule
references is the obsolete Mule deployment descriptor
files. These files will be removed as part of a general
code cleanup scheduled for TO 11.

2/18/09 Page 43AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Alternatives Analyzed
Closed-source commercial ESB
– Not considered an option due to requirements

Open-source ESB Alternatives
– Mule 2.0 ESB

2.0 version has more restrictive licensing (“Red Flagged” by RME
Aurora), Mule has gone to more commercial model
No telling whether next version of Mule will have an even more
restrictive license and go closed-source

– Apache ESB
Camel on steroids, unnecessary for our purposes, should stay
lightweight if we don't needs its features

– JBoss ESB
Runs inside Jboss, which we don't want

– Apache Camel Integration Framework

2/18/09 Page 44AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Benefits
Apache project – quality, reliable, open source
Very lightweight
– Camel bills itself as a “Spring based Integration Framework”
– Spring (XML) configurable
– Easy-to-configure services and routes
Camel may be embedded in ActiveMQ
– Facilitates running ESB as a single process

ActiveMQ, EDEX, and the test driver all run from within the same Java VM
Can be separated and deployed separately if necessary

Camel is an “Integration Framework”
– Designed to work with POJO classes rather than Camel-specific

classes
– This provides for a more flexible runtime environment

2/18/09 Page 45AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Benefits (cont’d)

Facilitates migration to a new processing model
– More fault tolerant

Less synchronicity, more transaction-style processing (with ability to migrate
to full transactions in future)
Less data read into memory queues
Pipeline style processing
► Ingest, persist, and decode occur in a single thread, more data not read

in until finished
– More customizable

Don't force one-size-fits-all
Separators, etc. are now optional

2/18/09 Page 46AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Benefits (cont’d)

Camel runs as an integrated part of ActiveMQ
– ActiveMQ uses a journal approach to queue management

The journal is saved at shutdown; it is restored at startup
– There is generally no loss of data when EDEX is stopped and restarted!

Simplified EDEX startup
– EDEX is started using a single script, start.sh
– EDEX mode set by passing a parameter to the script

Standalone: Single server running EDEX and optionally PostgreSQL
Server: Master server in a cluster of 2 or more servers
Client: Slave server in a cluster of 2 or more servers

– Additional optional argument allows runtime debugging

2/18/09 Page 47AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Running EDEX
Start PostgreSQL

In a console window, execute
<<awips-home>>/bin/start_developer_postgred.sh

Start EDEX
In a second console window, execute

<<awips-home>>/edex/bin/start.sh standalone

Hint: Replace <<awips-home>> with
the location where EDEX is installed.

2/18/09 Page 48AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel-Specific Code Required
All Camel-specific code has been isolated into to plug-ins:
– com.raytheon.uf.edex.esb.camel

Provides “executor” class for ESB launch
Implements EDEX specific “components”
Provides several EDEX specific utilities

– com.raytheon.uf.edex.esb.camel.launcher
Provides the required a “main” class for system startup

This isolation generally eliminates ESB dependencies
– Code not isolated into these plug-ins may be used elsewhere without

requiring Camel

Any additional Camel-specific code will be isolated into the
first plug-in

2/18/09 Page 49AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration
All Camel deployment descriptor (configuration) files are
bundled into the appropriate EDEX jars
– Located in res/spring

File names must be unique within EDEX
– Typically file name pattern: {function}-spring.xml or {function}-server.xml
– Deployments that should run on only one server in the clustered

environment must use {function}-server.xml

Examples:
– Purge Service: purge-server.xml
– TAF Ingest: taf-spring.xml
– Subscription Service: subscription-spring.xml
– Subscription Script Runners: runners-spring.xml

2/18/09 Page 50AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration: Basics

In EDEX, the main document tag in a Camel deployment descriptor
is the <beans /> tag
Embedded tags:
– <bean /> tag defines classes for later use by Camel

May set properties using nested <property /> tag
– <camelContext /> tag defines processing to be managed by Camel by

defining one or more routes
A route is declared using the <route /> tag
Exact processing to perform is specified by additional nested tags within each
route

2/18/09 Page 51AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration: - camelContext
In EDEX, a <camelContext /> tag
typically defines one or more
routes
– each route is defined in a separate

<route /> tag
a <camelContext /> tag may also
define one or more endpoints
– each endpoint is defined in a

separate <endpoint /> tag
endpoint URI may include values from
environment

Note: Specific examples of Camel deployment
descriptors will follow.

2/18/09 Page 52AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration: Camel Routes

Routes are paths through services for various tasks
–Routes are defined using the <route/> tag
–Following SOA, can chain routes together
–Routes can include transformers
Embedded tags:
–<from/> and <to/> are basic route tags
–<bean/> tag defines processing

2/18/09 Page 53AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration: Java Beans
Java Beans are used to define basic units of work
– Uses POJO’s; don't have to implement interfaces or extend anything
– Ensures no dependencies on Camel for services and transformers
Java Beans are declared and referenced using the <bean/> tag
– Java Beans are declared outside the <camelContext/> tag
– Java beans are referenced within the <camelContext/> tag
<bean/> tag syntax:
– Use id and class attributes when declaring the bean
– Use ref and method attributes when using the bean

2/18/09 Page 54AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration: Java Beans (cont’d)

Within a route, the return value from one component is passed to the
method called in the next method
In the example below:
– The HTTP request obtained from the <from/> tag,
– Is passed to the executePython method of the uEngine bean,
– Its return value is passed to the transformToThrift method of the

SerializationUtil bean,
– Its return value is the response to the HTTP request

2/18/09 Page 55AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration: Useful Routing
Multicast. Send one message to multiple endpoints
Splitter. Split a message into multiple messages
Try/Catch. Catch exceptions from sections of a route
Filter. Filter what messages reach the endpoint

2/18/09 Page 56AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Documentation
http://activemq.apache.org/camel/overview.html
Mailing list/forum is very helpful
Search the camel site (the table of contents is not so great)

It’s not documentation, but…
The EDEX code base provides a number of examples of
Camel descriptors

2/18/09 Page 57AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Camel Deployment Issues
All EDEX components are deployed into
the library directory
– Deployment is managed by the installer

“awips” is replaced by a path provided

When EDEX starts up, it looks into two
directories for jars containing
deployment descriptors
All plug-ins (data decoders) are
deployed into the plugins directory
– Plug-ins support additional data oriented

features such as purging
Services and libraries are generally
deployed into the services directory

2/18/09 Page 58AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

EDEX Camel Deployment Issues (cont’d)

Deployment of components is
determined by project name
All AWIPS II components are
deployed into the plug-ins and
services directories under the
edex/lib directory.
– As a default, a service is a

component having “raytheon” in its
name; a plug-in has both “raytheon”
and “plugin” in it’s name

– This default can be modified by
editing the deploy scripts

Non-AWIPS II components used
by EDEX (e.g., Camel) are
deployed into the dependencies
directory

2/18/09 Page 59AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example
Problem:

Create an EDEX component, YAHW, that logs messages to
the EDEX system log. In this example, we add wiring to have
YAHW available as a Camel managed service endpoint.

Solution:
Add the deployment descriptor to the TO10Example project
to enable HTTP interaction with the endpoint.

To Do:
Sending a message to the endpoint will be provided in a later
example.

2/18/09 Page 60AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Once the component has been coded (see previous
example), it needs to be wired into EDEX (configured as a
Camel endpoint)
– The Camel configuration file for this endpoint is shown below.
The next few slides cover the file creation in detail

Note: The Camel
descriptor file must
be in res/spring in
the EDEX project!

2/18/09 Page 61AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Create the resource folder:
Locate org.noaa.gov.to10.example
in the Navigator.
In the Navigator, right click on
org.noaa.gov.to10.example.
Select New→Folder.

The New Folder dialog will open
Enter res/spring for Folder name.
Click Finish.

The new folder will be created (see
listing at right).

2/18/09 Page 62AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Add example-spring.xml:
In the Navigator, right click on
res/spring in
org.noaa.gov.to10.example.
Select New→File.

The New File dialog will open.
Enter example-spring.xml as the
File name.
Click Finish.

Eclipse creates the new file.
example-spring.xml is open in the
XML editor.
– Note that the new file is empty!

2/18/09 Page 63AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Add the basic descriptor XML:
Enter the XML below; this is the <beans/> tag.
– Hint: This XML tag is the same in every descriptor; it may be copied from

another EDEX component.

CRITICAL!! This is the Spring <beans/> tag, which
defines the XML document in the file. It must be
entered exactly as shown. Unless it is entered
correctly, the new bean will not be available.

2/18/09 Page 64AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Add the <camelContext/> tag:
Add the <camelContext/> tag shown below to example-spring.xml.
Hint: This XML tag is the same in every descriptor; it may be copied from
another EDEX component.

New XML

CRITICAL!! This tag defines an XML sub-document that specifies
the Camel endpoint. It must be entered exactly as shown. Unless
it is entered correctly, the new bean will not be available.

2/18/09 Page 65AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Add the bean definition
Add the <bean/> tag shown below to example-spring.xml

New XML

Note: The <bean/> tag defines a Java Bean that
will be used in defining the Camel endpoint.

2/18/09 Page 66AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Complete the Route definition
Add the route definition as show below

New XML

Hint: The new XML is detailed
on the next slide.

2/18/09 Page 67AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Camel Configuration – Example (cont’d)

Exception handling,
errors are logged Request processed

by example class

Triggered by HTTP
request

2/18/09 Page 68AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Testing the Example
Build:

Build and deploy EDEX as previously described
Run:

Start PostgreSQL and EDEX as previously described
Test:

Open a browser (Firefox) and enter the following URL:
http://localhost:9581/services/example#This is a test

Hit the go button; if everything works correctly, you will get an
empty page

2/18/09 Page 69AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Testing the Example (cont’d)

Check the log:
Open a console window.
Change directory to <<awips-home>>/edex/logs.
Examine the latest log in a text viewer such as less or view.
Near the bottom of the log, you should see an entry similar to
this:

INFO 2009-01-29 14:22:22,873 [btpool2-0] ExampleMain:
org.mortbay.HttpParser$Input@6e36ff

Note: The log entry means the message was
delivered and logged. We really need to do
some processing to make the logging more
meaningful. This will be covered later.

2/18/09 Page 70AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 71AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates

2/18/09 Page 72AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Table Structure
Metadata database has a new schema
– Has an additional schema: subscription
– The tables in this schema are used by the EDEX subscription service

Metadata database awips schema has been reorganized
– The most visible change is the elimination of partitions in the non-static

tables
– Partitions were used to facilitate time based data purges, however …

This locked in a single purge strategy
► Single strategy not appropriate for all data types

Main table is essentially a view combining the partitions
► PostgreSQL treats each partition as a separate table
► Indices and constraints existed on the partition
► Causes problems with searches and inserts

2/18/09 Page 73AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: DAO
As previously briefed (TO9), Data Access Object (DAO)
pooling has been eliminated in EDEX
– Has been replaced by the lower level caching and pooling provided by

PostgreSQL and Hibernate

This will only affect developers writing code that accesses
data
– In most applications, you will be able to use the CoreDao class for data

retrieval
– In most cases, the code that utilizes a DAO has been simplified

2/18/09 Page 74AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Purging Tables
Database purging is now managed by the individual data decoders
– Each decoder specifies a purger in its plugin.xml file

Located in res/conf in the plug-in
A default purge strategy is provided (DefaultPurgerImpl) that implements
a simple time-based purge
– Purges table entries that are older than 24 hours
A no-purge strategy is provided (NoOpPurger) that implements a non-
purging strategy

Use only if alternative purging is implemented

CAUTION!! In TO10, EDEX purging is limited to
components deployed in the plug-ins directory.

2/18/09 Page 75AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Purging Tables (cont’d)

A decoder plug-in may implement
a purge strategy
– The purge strategy implements the

IPurger interface
– Package:

com.raytheon.edex.db.purge
– Part of the

com.raytheon.edex.common
component

Examples:
– TextPurger in

com.raytheon.edex.plugin.txt

class purge interface

«interface»
IPurger

+ purgeAl lPluginData() : void
+ purgeExpiredPluginData() : void

AbstractPurger

+ getPluginClass() : Class<?>
+ getPluginName() : String
+ getDatabaseName() : String
+ getHdf5Dir() : Fi le

DefaultPurgerImpl

+ DefaultPurgerImpl(String)
+ purgeAl lPluginData() : void
+ purgeExpiredPluginData() : void

NoOpPurger

+ NoOpPurger(String)
+ purgeAl lPluginData() : void
+ purgeExpiredPluginData() : void
+ exportSchema() : void
+ dropSchema() : void

Note: Custom purgers implement Ipurger; they
extend AbstractPurger, which provides
functionality needed by the purge service.

2/18/09 Page 76AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 77AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Hibernate Mapping
Hibernate Mapping is now implemented using Java 5.0 style annotations
– Annotations allow the Hibernate mapping information to be maintained in the

code rather than in a separate file
no more *.hbm.xml files!

Basic annotations are provided by the Java Persistence API
– Class level annotations identify the class as persistable
Hibernate specific annotations are provided by Hibernate
– Class level annotations map the Java class to the database table
– Field level attributes map the class’ attributes to database fields
– Some support for foreign key relationships are provided
Additional, custom annotations have been implemented
– Field level annotation defining elements of the data URI
Classes containing Hibernate mappings are listed in the component
– listed in com.raytheon.uf.common.serialization.ISerializableObject
– located in META-INF/services

2/18/09 Page 78AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Hibernate Mapping (cont’d)

Hibernate Annotations
Class level annotations
– @Entity, @Table

Specifies the DB table to class mapping for Hibernate
@Table has two arguments, name and schema, schema is optional

Attribute level annotations
– @Id, @GeneratedValue

Specifies the attribute as the table’s primary key, value to be generated
– @Column

Maps the attribute to a DB column
Optional argument, length, is used to specify column size

– @ManyToOne, @JoinColumn, @OneToMany
Used to specify foreign key relationships

2/18/09 Page 79AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example
Problem:

Add database persistence to YAHW. Specifically, create a
Hibernate mapped class that will store messages received by
YAHW to a database table. The table will be in the example
schema of the metatadata database. The table will be named
example and will include fields for message and its receipt
time.

Solution:
Create a POJO with three fields: id; time; and message. Add
annotations mapping to the desired database table. Hook the
POJO into YAHW for future use.

To Do:
We will add additional capability to this class later.

2/18/09 Page 80AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Add new dependencies to the YAHW project:
Open org.noaa.gov.to10.example/META-INF/MANIFEST.MF.
Select the Dependencies tab in the editor.
Add dependencies to the following:
– com.raytheon.edex.common
– javax.persistence

Hint: Eclipse operations previously covered in
detail will only be summarized from here out.

2/18/09 Page 81AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Create a new package for the data object:
Using eclipse, create a package:
org.noaa.gov.edex.to10.example.data
In the newly created package, create a class: ExampleData
– ExampleData will extend PersistableDataObject.
– ExampleData will implement ISerializableObject.
Once Eclipse has generated ExampleData, add the field shown.

2/18/09 Page 82AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Add data fields:
Add the class attributes shown.
– id will be a unique identifier.
– message will contain the text.
– time will save the receipt time.

Add accessor methods:
– Add standard getters and setters for

the class attributes.
– Use the standard “bean” pattern.

Hint: Eclipse will generate accessors.
Select Source→Generate Getters
and Setters…

Note: getters and setters are not shown.

2/18/09 Page 83AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Add the Hibernate annotations at the class level:
Add package imports.
Add the class level annotations as shown.

Note: Annotation functions
@Entity -- Identifies the class as being an object to persist
@Table -- identifies the table (and schema) the class is mapped to

The schema is optional, by default it is set to “awips”.

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 84AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Add the Hibernate annotations at the attribute level:
Add package imports as shown.
Add attribute annotations as shown.

Note: Annotation functions
@Id -- identities the field as the primary key
@GeneratedValue -- identifies that the database should generate the value
@Column -- specifies the size of the field

length attribute is optional

Note: This listing shows only the
new code and the existing code
needed to establish its context.

2/18/09 Page 85AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Link the new class into the framework:
Using Eclipse, create a directory called services in the
project’s META-INF directory.
Using Eclipse, create a file in META-INF/services. The name
of the file:

com.raytheon.uf.common.serialization.ISerializableObject
Enter the full name of the new data object in this file. The
name to enter:

org.noaa.gov.edex.to10.example.data.ExampleData

CAUTION!! Remember: In Linux, all
names are case sensitive.

2/18/09 Page 86AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Modify YAHW’s main class to write to the database:
Add the imports as shown (in bold).

These imports provided access to our ExampleData class and EDEX
database access code. EdexExceprion is a standard Exception class
used within EDEX.

Note: This listing
shows only the new
code and the
existing code
needed to establish
its context.

2/18/09 Page 87AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Modify YAHW’s main class to write to the database:
Add the saveMessage(…) method shown to our ExampleMain class.

This new method handles all communication with the database. It throws an
EdexException when the database insert fails.

Note: This listing shows
only the new code and
the existing code
needed to establish its
context.

2/18/09 Page 88AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Modify YAHW’s main class to write to the database
Add the new code (in bold) to ExampleMain’s execute() method.

This code calls the newly created method. A try…catch block is used to trap
any exception thrown by the method. In case of an error, the exception’s
message is returned rather than echoing the message.

Note: This listing
shows only the
new code and
the existing code
needed to
establish its
context.

2/18/09 Page 89AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Hibernate Mapping – Example (cont’d)

Testing the newly created functionality:
Because we are working in Eclipse, we know the code
compiles.
Beyond that, we are not ready to test the new code. First, we
need to get the database set up.

2/18/09 Page 90AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 91AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Table Generation
As before, dynamic database tables may be auto-generated
at system startup
– With the TO10 AWIPS II release, dynamic table generation is enabled

via Hibernate mappings for the data object classes
Note: Only the tables are generated; this process doesn’t generate a new
database or a schema

– Classes containing Hibernate mappings are listed in the component
Listed in com.raytheon.uf.common.serialization.ISerializableObject
Located in META-INF/services

Only plug-ins may auto generate dynamic tables

2/18/09 Page 92AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Table Generation (cont’d)

New in TO10: Plug-ins may include DDL to
generate/populate/modify static tables at EDEX start up
– The DDL for generating the tables must be in res/scripts in the

component

For example, the GRIB decoder plug-in uses this mechanism
to populate several static tables and to create indices

Again, this feature is only supported in data decoder plug-ins

2/18/09 Page 93AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates: Table Generation (cont’d)

In general, auto-generation of tables is limited to data
decoder plug-ins.
Other components requiring table generation/population have
two options:
– Running PostgreSQL DDL scripts under control of the EDEX installer
– Running PostgreSQL DDL scripts manually after the EDEX install

For TO10 EDEX, the installer runs any DDL needed to create
tables that can’t be auto generated by EDEX
Examples:
– The subscription and VTEC tables are generated by the installer.

2/18/09 Page 94AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates – Example
Problem:

Generate the tables required for YAHW.
Solution:

Because YAHW is not a data decoder plug-in, we will create
DDL to generate the tables and use a PostgreSQL admin
tool to create the database.

To Do:
We will add additional capability to this example later.

2/18/09 Page 95AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates – Example (cont’d)

Design the database schema:
This diagram shows the basic structure of
the schema for YAHW.
The main data table is example.
– id is the primary key.
– message contains the message text.
– msgtime contains the insert time.
static is a table used internally by
PostgreSQL.
pk_example is the primary key constraint
for the example table.

2/18/09 Page 96AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Database Updates – Example (cont’d)

Code the DDL
The DDL shown below right is used to generate our table structure
– In this DDL, we:

Create the example schema
Create the example.static table
Create the example.example table
Create the primary key on the example.example table

– For both tables, we set ownership to “awips”

Hint: The DDL can be
executes using a standard
db client such as PG Admin.

2/18/09 Page 97AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 98AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization

2/18/09 Page 99AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization
JAXB (Java Architecture for XML Binding) is a standard Java
API and tool set intended to automate the mapping between
XML documents and Java Objects
– AWIPS II uses JAXB 2.1, which works with Java 5.0 and newer
– See http://java.sun.com/javase/6/docs/technotes/guides/xml/jaxb/

index.html for additional information

Thrift is an Apache Incubator Project providing a software
framework for scalable cross-language services
development.
– Thrift is open standard. Developed by Facebook and open sourced in

2007, it is currently an Apache Incubator project.
– See http://incubator.apache.org/thrift/ for more information

http://java.sun.com/javase/6/docs/technotes/guides/xml/jaxb/�index.html
http://java.sun.com/javase/6/docs/technotes/guides/xml/jaxb/�index.html
http://java.sun.com/javase/6/docs/technotes/guides/xml/jaxb/�index.html

2/18/09 Page 100AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

Starting with TO3, EDEX/CAVE has used JiBX as its main
serialization mechanism
At runtime, JiBX is generally fast
JiBX simplifies coding:
– Eliminates the need to write code to generate XML for a class
– Eliminates the need to write code to parse XML into a class

Special JiBX marshaling routines do need to be written, but
they can be placed in a utility (library) class as static methods

2/18/09 Page 101AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

JiBX has certain “issues” that affect AWIPS II
JiBX supports serialization by modifying the compiled “byte code” of a
Java class
– Requires a separate, post-build pass through the system to compile the JiBX

bindings
– Makes incremental builds problematic – unable to build consistently against

modified classes
JiBX uses a separate binding file, usually binding.xml, to specify bindings
– This is an additional file required in the plug-in project
– Tends to be error prone as changes to Java code must be reflected a separate

file
JiBX does not work well with component-based applications
– Both CAVE and EDEX are component (plug-in) based
– Specifically, JiBX (out of the box) has problems with binding that bridge

components
Special coding was required to support binding that bridge components

2/18/09 Page 102AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

Why JAXB?
From the Sun web site: “JABX simplifies access to an XML
document from a Java program by presenting the XML
document to the program in a Java format.”
– essentially, this means most of the program is unaware of XML

XML binding are combined with the Java code
– AWIPS II uses XML binding annotations to specify the bindings
– Code and binding are in one place, no separate files to specify binding

Binding are finalized at runtime rather than compile time
– Binding do not require a separate build step
– Bindings between components work well

2/18/09 Page 103AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

Why Thrift?
Thrift is fast and flexible
Thrift supports “self describing” data
– Eliminates separate descriptors and separate build steps

Thrift is used in conjunction with JAXB
– Generally transparent to the developer

2/18/09 Page 104AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

Preliminary performance benchmarks
– Test #1: Serialize and Deserialize 1000 “typical” MetarRecords

JiBX: 752ms Serialize / 1090ms Deserialize
Dynamic Thrift: 550ms Serialize / 801ms Deserialize

– Test #2: Serialize and Deserialize Object with float[] of size of grid218.
JiBX: 240ms Serialize / 310ms Deserialize
Dynamic Thrift: 42ms Serialize / 38ms Deserialize

2/18/09 Page 105AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

Programming Issues
Both JAXB and Thrift require custom marshaling code
– These have been added to the AWIPS II base line in a utility class
– Utility methods are in

com.raytheon.uf.common.serialization.SerializationUtil

Serializable classes must be implemented using the Java
“Bean” pattern
– The class must have a default, no-arg constructor
– All attributes must have accessors that follow the bean pattern

2/18/09 Page 106AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization (cont’d)

Serialization Annotations
Class level annotations:
– @XmlRootElement, @XmlAccessorType, @DynamicSerialize

@XmlAccessorType has single argument. use XmlAccessType.NONE

Attribute annotations
– @XmlAttribute, @DynamicSerializeElement
– use both annotations with each serializable attribute

AWIPS II includes custom serialization annotations to support
combined JAXB/Thrift serialization
– @DynamicSerialize, @DynamicSerializeElement

2/18/09 Page 107AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example
Problem:

Add JAXB serialization to the data class in YAHW. Modify the
main service class to return the serialized data object on
successful data insertion.

Solution:
Add the JAXB annotations needed to make ExampleData
serializable. Add a serialization to ExampleMain. Wire in any
dependencies for the component.

To Do:
We still need a client that can communicate with YAHW.

2/18/09 Page 108AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example (cont’d)

Add import statements to ExampleData:
Open ExampleData in Eclipse.
Add the import statements shown in
bold at right.

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 109AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example (cont’d)

Add annotations to ExampleData:
Add the class level annotations shown below (in bold).
– @XmlRootElement, @XmlAccessorType, @DynamicSerialize
Add element level annotations as shown (in bold).
– @XmlAttribute, @DynamicSerializeElement
– add to every attribute

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 110AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example (cont’d)

Modify ExampleMain to include new capability:
Open ExampleMain in Eclipse.
Add the new import statements shown below (in bold).

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 111AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example (cont’d)

Add a new method to manage serialization:
Add an attribute, exampleData, to hold data object.
Add a method, serializeMessage(), to perform serialization.

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 112AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example (cont’d)

Modify existing method, saveData() to use the exampleData attribute:
Locate the saveMessage() method and modify the lines (in bold).
– Basically, replace the existing variable, ed, with the new attribute,

exampleData.

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 113AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

JAXB/Thrift Serialization – Example (cont’d)

Modify the execute() method to use the new capability:
Add/modify the lines shown below (in bold).
– In the try block, we call the new method.
– In the catch, we save the exception message to return later.
– the (new) finally block is used to release the exampleData object

Note: This listing shows only the new code and the
existing code needed to establish its context.

2/18/09 Page 114AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Testing the Example
Build:

Build and deploy EDEX
– As previously described on slides 36 – 39

Run:
Start PostgreSQL and EDEX
– As previously described on slide 47

Test:
Open a browser (Firefox) and enter the following URL:

http://localhost:9581/services/example#This is a test

Hit the go button; if everything works correctly, the browser
will display the page shown on the next slide

2/18/09 Page 115AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Testing the Example (cont’d)

Note: This works because we modified YAHW to return an XML
document rather than just the string. The message is missing
because the browser is not correctly sending it to EDEX.

2/18/09 Page 116AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Testing the Example (cont’d)

Check the log:
Open a console window.
Change directory to <<awips-home>>/edex/logs.
Examine the latest log in a text viewer such as less or view.
Near the bottom of the log, you should see an entry similar
to:

INFO 2009-01-29 14:22:22,873 [btpool2-0] ExampleMain:

Note: The log entry means the message was
delivered and logged. We really need is a client
that can send a simple text message to EDEX.

2/18/09 Page 117AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Testing the Example (cont’d)

Check the Database:
PostgreSQL includes a command line tool for executing SQL.

Open a console window.
Execute the following command:

psql -U awips -c "select * from example.example;" metadata
You should see a result similar to the screen capture below.

Hint: PostgreSQL includes a command line
database client called psql. This example
uses psql to verify the data insert.

2/18/09 Page 118AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 119AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface

2/18/09 Page 120AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface
TO10 introduces a new AWIPS II component, the Command
Line Interface (CLI) tools
– Three CLI tools are provided:

textdb. A rehost of the existing (AWIPS I) textdb tool
► existing textdb command line flags and responses have been preserved

uengine. A command line tool that interacts with the EDEX Product Server to
run Micro Engine scripts
subscription. A command line tool that interacts with the EDEX Subscription
Service to manage product subscriptions

– CLI tools are packaged in a separate installer provided with the ADE
Included in the com.raytheon.uf.tools.cli project

2/18/09 Page 121AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface: Design
Each CLI tool follows a standard design

The tool itself is a shell script that sets
the appropriate environment and
executes the tools main
The CLI Tool main is a Python class.
– The class is implemented as a main
– The action method is execute()
The CLI Tool main utilizes various
library classes
– Each library class is implemented in

Python
– Library classes provide reusable code

2/18/09 Page 122AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface: Design (cont’d)

CLI Library Packages
CommandLine.py. Provides standard support for reading
and parsing the command line
CommHandler.py. Provides an HTTP communication
handler
InputOutput.py. Provides standard methods for reading and
writing file streams
Message.py. Provides standard methods for creating and
decoding AWIPS II Canonical XML messages
Util.py. Provides several utility methods

Exceptions:
All packages other than Util.py provide function-related
exceptions for error propagation

2/18/09 Page 123AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface: Configuration
Each CLI tool is supported by two configuration files:

Configuration files are written as importable Python code
– Once installed, these files generally should not be modified

All tools use SiteConfig.py – contains site-specific information
– Currently contains connection information for the target EDEX server
– EDEX server DNS address is set by the installer

Each tool has a tool specific configuration file
– Contains data structures providing specific data

2/18/09 Page 124AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface: Features
The CLI tool set is designed to be extensible
The CLI library is designed to promote writing of new tools
– A new tool can use the library for common functionality
– The new tool contains just the desired new functionality

Existing CLI tools can be accessed by new tools
– Example: Using Python-TK, a GUI-based interface could be added to

the subscription tool without modifying the core tool code
– Example: The textdb tool uses the subscription tool to manage (add,

list, delete) AFOS PIL trigger scripts

2/18/09 Page 125AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example
Problem:

Create a command line tool that provides a client for YAHW.
The tool should allow the user to specify the message at the
command line.

Solution:
Following the CLI tool pattern to implement the tool. This will
include a top level shell script, a main class, and tool specific
configuration.

To Do:
Configure to deploy into the CLI deployment directory.

2/18/09 Page 126AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example (cont’d)

Existing CLI directory structure:
CLI tools deploy into the directory structure shown at
right.
We need to emulate parts of this structure in our
project; conf and a new directory for the Python main
class.

Create the CLI directory structure:
Using Eclipse, create the following directories inside
the TO 10 example project.

cli/src/conf
cli/src/example

Create the Python package files:
Using Eclipse, create a file named __init__.py in each
of these directories.

2/18/09 Page 127AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example (cont’d)

Create the top level shell script:
Using Eclipse, create a file named example in the cli/src directory in the
TO10 example project.
After the new file opens, add the code shown below and save the file.

Note: assumes EDEX is installed in
the user’s home directory

Note: We will set the permissions on
this file and copy it into place later.

2/18/09 Page 128AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example (cont’d)

Create the Python main class:
Using Eclipse, create a file called
Example.py in the cli/src/example
directory in the TO10 example
project.
Once the file opens, add the code
shown at right and save the file.

Note: This example illustrates how
to create a new CLI tool that
leverages the existing CLI library to
provide some basic functionality.

2/18/09 Page 129AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example (cont’d)

Create the tool specific configuration:
Using Eclipse, create a file called ExConfig.py in the
cli/src/config directory in the TO10 example project.
Once the file opens in Eclipse, add the following line of code
endpoint = {'example':'/services/example')

Save the file.

Note: This is a rather trivial example and in fact is not
required to implement the example CLI tool. It is
included to illustrate a CLI tool-specific configuration.
The CLI tools that shipped with TO10 have more
realistic tool configurations.

2/18/09 Page 130AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example (cont’d)

Setting permissions on the shell script:
Open a terminal window and change directory to the cli
directory in the TO10 example project
Execute: chmod a+x example

Deploying the new tool (use the same terminal)
Execute cp -Rf . ${HOME}/awips/fxa/bin

Note: This procedure assumes EDEX and CLI
have been installed as recommended in the
ADE flow tag.

2/18/09 Page 131AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Command Line Interface – Example (cont’d)

Testing the Tool:
Open a terminal window.
Change directory to ${HOME}/awips/fxa/bin.
Execute ./example This is another test.
Execute psql -U awips -c "select * from example.example;" metadata.

Your terminal display will be similar the screen capture shown above

2/18/09 Page 132AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 133AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins

2/18/09 Page 134AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins
To some extent, modifications to the data decoder plug-in
model have already been covered.
These include:
– Basic component structure – covered in slides 12 – 16
– Decoder data object considerations

Hibernate object/table mapping – covered in slides 77 – 79
Database table creation – covered in slides 91 – 93
Database purging – covered in slides 74 – 75
Data serialization – covered in slides 99 – 106

– Camel configuration – covered in slides 49 – 59

Several other features of data decoder plug-in components
are discussed on the next few slides

Note: The existing obs data decoder,
com.raytheon.edex.plugin.obs, is used to
illustrate these additional features.

2/18/09 Page 135AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins (cont’d)

Basic Directory Structure
All directories under src are created as classes
are created
META-INF/services contains a single file which
identifies files that either map to database
tables or are serializable
res/conf contains component configuration files
res/endpoints is obsolete; it is being removed
res/scripts contains PostgreSQL DDL scripts
that are executed when the plug-in creates its
database tables

(optional)
unit test code

non-standard
EDEX directories

The next few slides provide additional
information on each of these directories.
Each slide includes examples from the OBS
data decoder plug-in.

2/18/09 Page 136AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: META-INF/services

META-INF/services contains a single file:
com.raytheon.uf.common.serialization.ISerializableObject
This file lists all classes in the data decoder plug-in that are either
serializable or are mapped to database tables
– The actual classes must implement ISerializableObject
– The actual classes must use either JAXB or Hibernate annotations
In most data decoder plug-ins, all data objects are listed here

CRITICAL!! This file must be created and/or updated
manually as new data classes are created in the plug-in.

2/18/09 Page 137AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: res/conf

res/conf contains one or more component configuration files
– It should include a file named plugin.xml that contains the basic configuration

for the component
– It may include other XML configuration files
plugin.xml for the OBS data decoder is shown here

2/18/09 Page 138AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: res/conf (cont’d)

Tags in plugin.xml define the basic configuration of the plug-in
Required tags
– <Name /> identifies the configuration name for the plug-in
– </Plugin /> identifies this component as needing auto creation of database tables
– <Database /> identifies the database used by the plug-in
– <Purger /> identifies the data purge class used by the plug-in
– <Record /> identifies the data record used by the plug-in
Optional tags
– <Decoder /> identifies the data decode class used by the plug-in
– <SEPARATOR /> identifies the record separator tags
– other tags may be included to provide additional configuration for the decoder

Note: Some of the information in this file is being
moved to the Camel descriptor in TO11.

2/18/09 Page 139AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: res/scripts
res/scripts contains DDL for the plugin

The DDL is run after the first time the
tables are created by the purge
server
This example shows the contents of
obsIndices.sql which is in the OBS
data decoder plug-in
– This DDL creates indices on the

previously created tables
Some plug-ins use this capability to
populate previously created tables

2/18/09 Page 140AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Hibernate
Hibernate annotations covered previously (slides 77 – 78)
Annotations not covered in detail:
@DataURI – identifies the field as an element of the Data URI

The Data URI provides a unique identifier for the data, made up of the values
of one or more fields from the data record
Has one argument, position, which identifies the position the data occupies in
the URI
Example:
@DataURI(position=2)

result data URI is /<plug-in name>/…/<data value>/…

2/18/09 Page 141AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Hibernate (cont’d)

Annotations not covered in detail:
@ManyToOne – Identifies the field as a foreign key to another table

No arguments, but data attribute must match class of foreign table
Used with the @JoinColumn annotation

@JoinColumn – Identifies the column containing the foreign key value
Two arguments: name and nullable
► Name: identifies the name of the field to map
► Nullable: specifies if the field can be null – generally set to false

Example:
@ManyToOne

@JoinColumn(name="parentMetar",nullable=false)
private MetarRecord parentMetar;

2/18/09 Page 142AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Hibernate (cont’d)

Annotations not covered in detail:
@OneToMany –Identifies the field as providing a mapping to a secondary

table
Three arguments: cascade; mappedBy; and fetch
► cascade: identifies operations to cascade to secondary table
► mappedBy: identifies the field of the secondary table to map
► fetch: identifies loading strategy (EAGER or LAZY)

Attribute must be a Set of objects representing the target table
Example:
@ OneToMany(cascade=CascadeType.ALL,

mappedBy="parentMetar",
fetch=FetchType.EAGER)

private Set<WeatherCondition> weatherCondition

= new HashSet<WeatherCondition>();

2/18/09 Page 143AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Hibernate (cont’d)

Additional Information
Additional information on the annotations used for Hibernate
mapping is available on line at
– Basic persistence annotations (javax.persistence):

http://www.hibernate.org/hib_docs/ejb3-api/
– Hibernate annotations (org.hibernate.annotations):

http://www.hibernate.org/5.html#A9
http://www.hibernate.org/hib_docs/annotations/api/org/hibernate/
annotations/package-summary.html

http://www.hibernate.org/hib_docs/ejb3-api/
http://www.hibernate.org/5.html#A9
http://www.hibernate.org/hib_docs/annotations/api/org/hibernate/�annotations/package-summary.html
http://www.hibernate.org/hib_docs/annotations/api/org/hibernate/�annotations/package-summary.html

2/18/09 Page 144AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Naming Convention
EDEX deployment
– Deployment is managed by the deploy-install.xml ANT script in the

build.edex project

EDEX data decoder plug-ins
– EDEX data decoder plug-ins are deployed in the EDEX plug-ins

directory; ${AWIPS_HOME}/edex/lib/plugins
– By default, only projects containing both “raytheon” and “plugin” in the

project directory name are deployed to the plug-in directory

EDEX services and libraries
– EDEX services and libraries are deployed in the EDEX services

directory; ${AWIPS_HOME}/edex/lib/services
– By default, only projects containing “raytheon” but not “plugin” in the

project directory name are deployed to the plug-in directory

2/18/09 Page 145AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Naming Convention (cont’d)

EDEX support libraries
– EDEX support libraries are deployed in the EDEX dependencies

directory; ${AWIPS_HOME}/edex/lib/dependencies
– Only prepackaged JavaARchives (JAR) files are deployed to the

dependencies directory
– By default, only projects containing neither “raytheon” nor “plugin” in the

project directory name are deployed to the plug-in directory

Additional considerations
– As EDEX starts up, only the plug-ins and services directories are

scanned for Camel deployment descriptors
– In addition, only the plug-ins directory is scanned for data decoders
– All components to be deployed must be listed as plug-in dependencies

in the EDEX feature

2/18/09 Page 146AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Naming Convention (cont’d)

Modifying the defaults
– The deploy-install.xml ANT script uses a custom task to determine

which component projects to deploy
The task is GenerateIncludesFromFeature, which is aliased as “includegen”
in the ANT script

– includegen accepts several attributes in its XML tag, the critical ones
controlling deployment are providerfilter and pluginfilter

providerfilter. A pipe separated list of names of component providers
► Components containing one of these names are deployed to either the

plug-ins or services directory
► If specified, “raytheon” must be one of the names

pluginfilter. A pipe separated list of words that identify plugins
► If specified, “plugin” must be one of the words

2/18/09 Page 147AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Naming Convention (cont’d)

Recommendation
– Name new components following the domain-based naming convention

example: com.raytheon.edex. …
example: gov.nws.noaa.edex. …

– For data decoder based components include “plugin” in the name
– Modify the includegen task in deploy.install.xml to include both

“raytheon” and the appropriate provider name
Example: providerfilter="raytheon|noaa"

Note: For a comprehensive example on naming
components, see slides 17 – 39.

2/18/09 Page 148AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Data Storage
HDF5 storage of BLOB (binary) data has been modified to improve
storage and access efficiency
A separate file is maintained for each server decoding the data
– Naming scheme: {data type}-{server code}.h5
– Server code is the hash code of the server’s name

2/18/09 Page 149AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins
The server code value is included
in the data type’s metadata table
– Defined in

PersistablePluginDataObject
– Value is set by the HDF5 DAO;

decoder code does not set this value
All HDF5 data access (read/write)
should go through the HDF5 Dao

class sat record

satellite::SatelliteRecord

objects::PersistablePluginDataObject

objects::PluginDataObject

objects::
PersistableDataObject

«interface»
objects::IPersistableDataObject

«interface»
serialization::ISerializableObject

«interface»
plugin::IPersistable

«interface»
spatial::ISpatialEnabled

«interface»
io::Serializable

PersistablePluginDataObject

2/18/09 Page 150AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Camel Wiring
Each data decoder represents an ingest path
There are four main components to wiring the component
– Specify decoder bean(s)
– Register the threading router
– Define a file sniffing route
– Define the ingest route

Standard routes are configured to assist in the wiring
– persistIndexAlert. Used for BLOB data; persists to HDF5, inserts into

the database, alerts clients of data receipt
– indexAlert. Used for text data; inserts into the database, alerts clients

of data receipt

2/18/09 Page 151AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Camel Wiring (cont’d)

Basic document structure:
Basic structure of the Camel
descriptor is shown at right
Each endpoint should provide a
unique name (id) for its Camel
Context
File names must be unique
Multiple beans may be declared
Multiple routes may be declared

Note: The next few slides examine the Camel
descriptor for the satellite data decoder
endpoint. Other decoder endpoints are similar.

2/18/09 Page 152AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Camel Wiring (cont’d)

Specify decoder beans:
Define the beans that will be called in one of the endpoint routes

The satellite decoder uses a single decoder bean

2/18/09 Page 153AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Camel Wiring (cont’d)

Register threading router
This snippet is similar for most data decoders
Constructor arguments are passed to the getInstance() method
– 1st argument identifies the pool to use (Generic, AlphaNumeric or BUFR)
– 2nd argument identifies the plugin
– 3rd argument provides the route name

2/18/09 Page 154AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Camel Wiring (cont’d)

Define a file sniffing route
Replaces the TO9 staging service
The endpoint tag defines pickup location for the data
– Environment replace (e.g., ${edex.home}) may be used here
The “fileToString” bean moves the file to the processing directory and
passes along the new file location
The file name is passed to the appropriate ingest router

2/18/09 Page 155AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Camel Wiring (cont’d)

Define the data ingest route
– Defines the decoding process
– Receives a file name form the ingest router
– The “stringToFile” bean converts the file name to a File object
– The “satDecoder” bean decodes the file

Note that Camel automatically reads the file and passes it to the decoder
– After decoding, the image is passed to the persistence component
– The last action performed is to delete the original file
Note the <try /> and nested <catch /> tags that implement basic error handling

2/18/09 Page 156AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Data Purging
Data purging is currently limited to
components deployed the EDEX
plug-ins directory (slides 74 & 75)
– Data purging is declared in the

component’s plugin.xml file
– Data decoders requiring custom

purging
Provide a purger that extends
AbstractPurger (or an existing purger
such as DefaultPurgerImpl)
Overrides the appropriate methods

class purge interface

«interface»
IPurger

+ purgeAl lPluginData() : void
+ purgeExpiredPluginData() : void

AbstractPurger

+ getPluginClass() : Class<?>
+ getPluginName() : String
+ getDatabaseName() : String
+ getHdf5Dir() : Fi le

DefaultPurgerImpl

+ DefaultPurgerImpl(String)
+ purgeAllPluginData() : void
+ purgeExpiredPluginData() : void

NoOpPurger

+ NoOpPurger(String)
+ purgeAllPluginData() : void
+ purgeExpiredPluginData() : void
+ exportSchema() : void
+ dropSchema() : void

2/18/09 Page 157AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Data Purging –
Example
Problem:

Create a custom purger that deletes data older than 12 hours
rather than the 24 hours provided by the default purger.

Solution:
Extend the default purger and override the initializePlugin()
method (this is where the retention time is set).

2/18/09 Page 158AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Data Decoder Plug-ins: Data Purging –
Example (cont’d)

Implementation requires two methods:
The constructor simply delegates to the base class
InitializePlugin():
– First delegates to the base class
– Creates a new PluginVersion object

Represents the database table that tracks purge
information

– Updates the database

2/18/09 Page 159AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 160AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Service Endpoints

2/18/09 Page 161AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Service Endpoints
Most changes/improvements relating to EDEX service
endpoints have been covered already
– The example in slides 17 – 39 generally covers component structure,

additional files, deployment issues, etc., of an EDEX service endpoint
– Slides 49 – 58 and the example on slides 59 – 69 cover Camel

configuration and wiring an endpoint into EDEX
– Slides 77, 78, and 140 – 143 cover Hibernate topics, and the example

on slides 79 – 89 covers adding database persistence to an EDEX
service

2/18/09 Page 162AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Service Endpoints
Camel Usage

All services have been refactored as Camel endpoints

Notable New Services
TextDBSrv implements the back end of the of the textdb tool
AutoBldSrv has be revamped to implement basic
subscription management and script running capabilities
ProductSrv no longer supports JavaScript micro engine
scripts

2/18/09 Page 163AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

MicroEngine
MicroEngine has been refactored
somewhat
– MicroEngine is now a factory class

that generates script runners
Has a single method, getInstance(…)
to get the runner

– MicroEngine script runners are now
plugable

Script runners for Python, JavaScript,
system calls are provided
The script runner for text database
triggers is being worked in TO 11

– Basic class design is shown at right
Note that new script runners can be
created

– Underlying scripting concepts have
not been changed

class micro engine

«interface»
runners::IMicroEngine

+ execute() : void
+ executeScript(String) : List<AbstractResponseMessage>
+ getResul t() : List<AbstractResponseMessage>
+ ini tial ize() : void
+ ini tial ize(String) : void
+ release() : void
+ setScript(String) : void

runners::AMicroEngine

+ AMicroEngine()
+ execute() : void
+ ini tial ize() : void
+ release() : void
+ executeScript(String) : List<AbstractResponseMessage>
+ getResult() : List<AbstractResponseMessage>
+ ini tial ize(String) : void
+ setScript(String) : void

runners::MicroEngine
{leaf}

- M icroEngine()
+ getInstance(String) : IM icroEngine

runners::
JsMicroEngine

runners::
LdadMicroEngine

runners::PyMicroEngine runners::SysMicroEngine

Note: MicroEngine provides safe
implementations of all methods except
execute().

2/18/09 Page 164AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Questions?

2/18/09 Page 165AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Wrap-Up

2/18/09 Page 166AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Summary
Covered EDEX platform updates
Covered EDEX Code Reorganization
Covered move to Camel as the Integration Framework
Covered database improvements
Covered data serialization improvements
Covered new Command Line Interface tools package
Covered improvements to data decoder plug-ins
Covered improvements to EDEX service endpoints

2/18/09 Page 167AWP.TRG.SWCTR/TO10.ADE/CAVE-16.00 EDEX Updates for TO10

Resources
On the ADE TO9 DVD
– Current code available for examination in the ADE baseline
– JavaDoc documentation available

Also available
– TO9 Training updates
– TO-T1 Training materials

	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objective
	Topics
	Platform Updates
	Platform Updates – Eclipse
	Platform Updates: PostgreSQL
	Platform Updates: ActiveMQ
	Platform Updates: Mule
	Platform Updates: Java Serialization
	EDEX Code Reorganization
	EDEX Code Reorganization
	EDEX Code Reorganization (cont’d)
	EDEX Code Reorganization (cont’d)
	EDEX Code Reorganization (cont’d)
	EDEX Code Reorganization – Tools
	EDEX Code Reorganization – Example
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	EDEX Code Reorganization – Example (cont’d)
	Transition from Mule to Camel
	Why Camel?
	Alternatives Analyzed
	Camel Benefits
	Camel Benefits (cont’d)
	Camel Benefits (cont’d)
	Running EDEX
	Camel-Specific Code Required
	Camel Configuration
	Camel Configuration: Basics
	Camel Configuration: - camelContext
	Camel Configuration: Camel Routes
	Camel Configuration: Java Beans
	Camel Configuration: Java Beans (cont’d)
	Camel Configuration: Useful Routing
	Camel Documentation
	EDEX Camel Deployment Issues
	EDEX Camel Deployment Issues (cont’d)
	Camel Configuration – Example
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Camel Configuration – Example (cont’d)
	Testing the Example
	Testing the Example (cont’d)
	Database Updates
	Database Updates: Table Structure
	Database Updates: DAO
	Database Updates: Purging Tables
	Database Updates: Purging Tables (cont’d)
	Database Updates: Hibernate Mapping
	Database Updates: Hibernate Mapping (cont’d)
	Hibernate Mapping – Example
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Hibernate Mapping – Example (cont’d)
	Database Updates: Table Generation
	Database Updates: Table Generation (cont’d)
	Database Updates: Table Generation (cont’d)
	Database Updates – Example
	Database Updates – Example (cont’d)
	Database Updates – Example (cont’d)
	JAXB/Thrift Serialization
	JAXB/Thrift Serialization
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization (cont’d)
	JAXB/Thrift Serialization – Example
	JAXB/Thrift Serialization – Example (cont’d)
	JAXB/Thrift Serialization – Example (cont’d)
	JAXB/Thrift Serialization – Example (cont’d)
	JAXB/Thrift Serialization – Example (cont’d)
	JAXB/Thrift Serialization – Example (cont’d)
	JAXB/Thrift Serialization – Example (cont’d)
	Testing the Example
	Testing the Example (cont’d)
	Testing the Example (cont’d)
	Testing the Example (cont’d)
	Command Line Interface
	Command Line Interface
	Command Line Interface: Design
	Command Line Interface: Design (cont’d)
	Command Line Interface: Configuration
	Command Line Interface: Features
	Command Line Interface – Example
	Command Line Interface – Example (cont’d)
	Command Line Interface – Example (cont’d)
	Command Line Interface – Example (cont’d)
	Command Line Interface – Example (cont’d)
	Command Line Interface – Example (cont’d)
	Command Line Interface – Example (cont’d)
	Data Decoder Plug-ins
	Data Decoder Plug-ins
	Data Decoder Plug-ins (cont’d)
	Data Decoder Plug-ins: META-INF/services
	Data Decoder Plug-ins: res/conf
	Data Decoder Plug-ins: res/conf (cont’d)
	Data Decoder Plug-ins: res/scripts
	Data Decoder Plug-ins: Hibernate
	Data Decoder Plug-ins: Hibernate (cont’d)
	Data Decoder Plug-ins: Hibernate (cont’d)
	Data Decoder Plug-ins: Hibernate (cont’d)
	Data Decoder Plug-ins: Naming Convention
	Data Decoder Plug-ins: Naming Convention (cont’d)
	Data Decoder Plug-ins: Naming Convention (cont’d)
	Data Decoder Plug-ins: Naming Convention (cont’d)
	Data Decoder Plug-ins: Data Storage
	Data Decoder Plug-ins
	Data Decoder Plug-ins: Camel Wiring
	Data Decoder Plug-ins: Camel Wiring (cont’d)
	Data Decoder Plug-ins: Camel Wiring (cont’d)
	Data Decoder Plug-ins: Camel Wiring (cont’d)
	Data Decoder Plug-ins: Camel Wiring (cont’d)
	Data Decoder Plug-ins: Camel Wiring (cont’d)
	Data Decoder Plug-ins: Data Purging
	Data Decoder Plug-ins: Data Purging – Example
	Data Decoder Plug-ins: Data Purging – Example (cont’d)
	Service Endpoints
	Service Endpoints
	Service Endpoints
	MicroEngine
	Summary
	Resources

